Cooperative RecA clustering: the key to efficient homology searching

نویسندگان

  • Andrew J. Lee
  • Rajan Sharma
  • Jamie K. Hobbs
  • Christoph Wälti
چکیده

The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly cooperative, involving multiple phases. Initially, the process is dominated by a rapid 'association' phase, where multiple filaments interact on the same dsDNA simultaneously. This cooperative nature is reconciled by the observation of localized dense clusters of pre-synaptic filaments interacting with the observed dsDNA molecules. This confinement of reactive species within the vicinity of the dsDNA, is likely to play an important role in ensuring that a high interaction rate between the nucleoprotein filaments and the dsDNA can be achieved. This is followed by a slower 'resolution' phase, where the synaptic joints either locate sequence homology and progress to a post-synaptic joint, or dissociate from the dsDNA. Surprisingly, the number of simultaneous synaptic joints decreases rapidly after saturation of the dsDNA population, suggesting a reduction in interaction activity of the RecA filaments. We find that the time-scale of this decay is in line with the time-scale of the dispersion of the RecA filament clusters, further emphasising the important role this cooperative phenomena may play in the RecA-facilitated homology search.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.

Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we...

متن کامل

Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure

RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- an...

متن کامل

The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA.

A key step in homologous recombination is the alignment and pairing of homologous DNAs. The Escherichia coli RecA protein initiates pairing by binding to single-strand DNA, forming a helical nucleoprotein filament. We demonstrate that in the presence of the nonhydrolyzable ATP analogue adenosine 5'-[gamma-thio]triphosphate and ADP, RecA can pair a homologous oligonucleotide 15 bases long with a...

متن کامل

Cooperative Conformational Transitions Keep RecA Filament Active During ATPase Cycle

The active, stretched conformation of the RecA filament bound to single-stranded DNA is required for homologous recombination. During this process, the RecA filament mediates the homology search and base pair exchange with a complementary sequence. Subsequently, the RecA filament dissociates from DNA upon reaction completion. ATP binding and hydrolysis is critical throughout these processes. Li...

متن کامل

High fidelity of RecA-catalyzed recombination:

Homologous recombination plays a key role in generating genetic diversity, while maintaining protein functionality. The mechanisms by which RecA enables a single-stranded segment of DNA to recognize a homologous tract within a whole genome are poorly understood. The scale by which homology recognition takes place is of a few tens of base pairs, after which the quest for homology is over. To stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017